Multiple Zeta Values and the Connes-Moscovici Hopf Algebra

Mehrdad, Mehran
adviser: Prof. Dr. Don Zagier

part 1

Multiple Zeta Values

For an n-tuple of positive integers \(k = (k_1, k_2, \ldots, k_n) \) with \(k_i > 1 \), we define multiple zeta values \(\zeta(k) \) by the convergent series
\[
\zeta(k) = \sum_{\alpha \in \mathbb{N}^n} \frac{1}{\alpha_1^k_1 \alpha_2^k_2 \cdots \alpha_n^k_n}
\]
MZV has an integral representation as follows.
\[
\zeta(k) = \int_0^1 \cdots \int_0^1 \omega(t_1, \omega(t_2, \cdots \omega(t_n)) dt_1 \cdots dt_n
\]
where \(\omega(t) = t_1 + t_2 + \cdots + t_n \) is the weight of \(\zeta(k) \) and \(\omega(t) = 0 \) if \(n > 1 \).

There is a little known about arithmetical properties of these numbers. On the other hand there is a huge amount of research (linear and algebraic) among MZV’s. One of the fascinating features of MZV’s is that the structure of relations over \(Q \) reflects other structures in mathematics and physics.

part 2

The Modular Algebra

Let \(M \) be the ring of modular forms of all levels and all weights. \(M \) is graded by the weight and the group \(\text{PGL}_2(\mathbb{Q}) \) acts on \(M \) via the scalar operator
\[
f_c(x) = (dx + b)^m (cx + d)^n f(x)
\]
where \(k \) is the weight of \(f \) and \(\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \text{PGL}_2(\mathbb{Q}) \). The modular product \(\text{A} \times \text{PGL}_2(\mathbb{Q}) = \text{Modular algebra} \).

part 3

CM-action

Theorem. For an \(n \)-tuple of positive integers \(k = (k_1, k_2, \ldots, k_n) \) with \(k_i > 1 \), we define multiple zeta values \(\zeta(k) \) by the convergent series
\[
\zeta(k) = \sum_{\alpha \in \mathbb{N}^n} \frac{1}{\alpha_1^k_1 \alpha_2^k_2 \cdots \alpha_n^k_n}
\]
MZV has an integral representation as follows.
\[
\zeta(k) = \int_0^1 \cdots \int_0^1 \omega(t_1, \omega(t_2, \cdots \omega(t_n)) dt_1 \cdots dt_n
\]
where \(\omega(t) = t_1 + t_2 + \cdots + t_n \) is the weight of \(\zeta(k) \) and \(\omega(t) = 0 \) if \(n > 1 \).

There is a little known about arithmetical properties of these numbers. On the other hand there is a huge amount of research (linear and algebraic) among MZV’s. One of the fascinating features of MZV’s is that the structure of relations over \(Q \) reflects other structures in mathematics and physics.

part 4

Connection to MZV’s

Let \(L \) be the ring of the quasi-free algebra on the letters \(X, \theta \) by the relations that all \(M_x X(\theta) \theta M_x \) commute. Alternatively, \(L \) is the Lie algebra with basis \(\{X, \theta, \delta_1, \ldots, \delta_n\} \) and relations \([X, \theta] = \theta [X, \theta] = 0 \).

Let \(\zeta(k) \) be the weight of \(\zeta(k) \) and the group \(A \) acts on \(M \) by
\[
f_c(x) = (dx + b)^m (cx + d)^n f(x)
\]
where \(k \) is the weight of \(f \) and \(\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \text{PGL}_2(\mathbb{Q}) \). The modular product \(\text{A} \times \text{PGL}_2(\mathbb{Q}) = \text{Modular algebra} \).

References

3. Gómez, Héctor; Katz, Mikhail; Zagier, Don Double zeta values and modular forms, Analytic number theory and automorphic forms, 75–106.